A Charge-Transfer Complex: Bis(2,4,6-trimethyl-1-pyridyl)iodonium Perchlorate

By Gary D. Brayer* and Michael N. G. James
MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2 H7

(Received 19 February 1981; accepted 28 July 1981)

Abstract

C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{2} \mathrm{I}^{+} . \mathrm{ClO}_{4}^{-}, M_{r}=468.72\), monoclinic, $C 2 / c, a=27.844$ (5), $b=11.036$ (2), $c=$ 23.412 (7) $\AA, \beta=126.47(2)^{\circ}, V=5785.7 \AA^{3}, Z=$ $12, d_{o}=1.60, d_{c}=1.61 \mathrm{Mg} \mathrm{m}^{-3}, R=0.057$ and $R_{w}=$ 0.065 for 2171 reflections [$I>2 \sigma(I)$]. $\operatorname{Bis}(2,4,6-$ trimethyl-1-pyridyl)iodonium perchlorate crystallized with 1.5 formula weights per asymmetric unit; two conformations of the bis(2,4,6-trimethyl-1-pyridyl)iodonium cation are observed. The cation in the general position has a propeller-like twist conformation of the two γ-collidine (synonymous with 2,4,6-trimethyl-1pyridyl) planes (dihedral angle 35.7°) whereas the cation with the iodine on the centre of symmetry has the two γ-collidine rings parallel but the planes are separated by $1.34 \AA$. The three unique $\mathrm{I}-\mathrm{N}$ chargetransfer bond lengths average 2.29 (1) \AA.

Introduction. The geometry of charge-transfer complexes of tertiary amines with dihalogens is well established (Strømme, 1959; Hassel \& Hope, 1960; Hassel \& Rømming, 1967). The $\mathrm{N}-X-X \quad(X=$ halogen) bond pattern is linear with $\mathrm{N}-\mathrm{I}$ distances of $2 \cdot 26-2 \cdot 31 \AA$. These lengths are longer than expected for the sum of the covalent radii ($2.03 \AA$) but much shorter than the sum of the van der Waals radii of I and N ($\sim 3.55 \AA$; Bondi, 1964). It has been noted that charge-transfer complexes involving two heteroaromatic amines and I^{+}should have many of the properties of the previously mentioned dihalogenamine complexes (Hassel, 1970). This inference was made from the results of the determination of the structure of pyridine. $2 \mathrm{I}_{2}$ (Hassel \& Hope, 1961) which contains dipyridyliodonium ions.

The preparation of bis(2,4,6-trimethyl-1-pyridyl)iodonium perchlorate (the 2,4,6-trimethylpyridyl group is also referred to as γ collidine below) and the isomorphous bis $(\gamma$-collidine)bromonium perchlorate has been described by Lemieux \& Morgan (1965). It was of interest to determine the effect that the two ortho methyl groups might have on the geometry of these charge-transfer complexes. The $\mathrm{I}-\mathrm{N}$ distance in the structure of pyridine. $2 \mathrm{I}_{2}$ is $2 \cdot 16 \AA$ (Hassel \& Hope, 1961).

[^0]0567-7408/82/020654-04\$01.00

Well formed, multifaceted, transparent, colorless single crystals of both bis(2,4,6-trimethyl-1-pyridyl) iodonium perchlorate and the corresponding bromonium salt were obtained by slow diffusion of petroleum ether into a methylene dichloride solution of each compound. Preliminary diffraction photographs established that the space group is $C 2 / c$ or $C c$ and that the crystals of the bromonium complex $\mid a=27.275$ (9), $b=11.043$ (2), $c=23.548$ (8) \AA and $\beta=127.2$ (1) ${ }^{\circ}$, measured on an FACS-1 diffractometer] were isomorphous with those of the iodonium complex.

X-ray intensities for crystals of bis(γ-collidine)iodonium perchlorate were measured at 291 K on a Picker FACS-1 diffractometer (modified with an extended 650 mm crystal-counter diffracted-beam helium path). An approximately equidimensional (0.3 mm) crystal and Ni -filtered $\mathrm{Cu} K a$ radiation were used. The intensities were recorded by $\theta-2 \theta$ scans $\left(1^{\circ} \mathrm{min}^{-1}\right)$ and two 10 s fixed-position background counts for all reflections in one quadrant up to $2 \theta=100^{\circ}$. A correction for linear decay was made from the decrease of the intensities of three monitor reflections with time (maximum 7.7% from initial). The absorption-profile correction was after that of North, Phillips \& Mathews (1968). After equivalent $h k 0$ and $\bar{h} k 0$ reflections were averaged, the calculation of the standard deviation of the intensities (as defined by Stout \& Jensen, 1968) indicated that of the 2427 measured, 2171 had $I>$ $2 \sigma(I)$.

The structure was solved by Patterson and Fourier syntheses and refined by full-matrix least squares (unit weights). Anisotropic temperature factors were refined for non-hydrogen atoms. One of the perchlorate ions lies on a twofold axis and exhibits spatial disorder. Hydrogen atoms on the γ-collidine rings were readily located, but those of the methyl groups showed varying degrees of disorder. All H atoms were included in the structure factor calculations ($B=5 \cdot 0 \AA^{2}$), but none were refined. During the course of refinement attempts to describe the disordered perchlorate ion were not completely successful; a second set of O -atom positions (occupancy $\frac{1}{3}$, estimated from peak heights on the difference map) were determined. Refinement was concluded with a final conventional R value ($=\sum| | F_{o} \mid$ $\left.-\left|F_{c}\right| / \sum\left|F_{o}\right|\right)$ for observed reflections of 0.057 ; the

Table 1. Positional parameters $\left(\times 10^{4}\right)$ and $B_{\text {eq }}$ values for non-hydrogen atoms

The equivalent B factors ($B_{\text {eq }}$) are given in \AA^{2}.

	x	y	z	$B_{\text {eq }}$
I(1)	2065 (1)	536 (1)	3570 (1)	$3 \cdot 84$ (6)
I(2)*	5000	0	5000	$3 \cdot 23$ (5)
$\mathrm{Cl}(1)$	1536 (2)	1511 (4)	651 (2)	4.00 (14)
$\mathrm{Cl}(2){ }^{\text {* }}$	5000	998 (7)	7500	$8 \cdot 23$ (18)
$\mathrm{N}(1)$	2804 (6)	1780 (12)	4426 (6)	$4 \cdot 3$ (6)
N(2)	1295 (5)	-702 (11)	2731 (6)	$3 \cdot 8$ (6)
N(3)	4232 (5)	1194 (10)	4136 (5)	3.4 (5)
C(1)	2690 (7)	2966 (16)	4411 (8)	$4 \cdot 2$ (7)
C(2)	3136 (7)	3714 (14)	4960 (8)	4.2 (8)
C(3)	3665 (7)	3244 (17)	5520 (8)	4.6 (8)
C(4)	3754 (7)	2020 (16)	5508 (8)	$5 \cdot 0$ (8)
C(5)	3320 (7)	1256 (16)	4973 (8)	$5 \cdot 1$ (8)
C(6)	2125 (8)	3550 (15)	3798 (8)	5.6 (8)
C(7)	3415 (8)	-95 (15)	4964 (10)	7.5 (9)
C(8)	4152 (8)	4041 (17)	6110 (9)	6.7 (9)
C(9)	871 (7)	-274 (14)	2050 (7)	$3 \cdot 8$ (7)
$\mathrm{C}(10)$	378 (7)	-973 (17)	1584 (8)	4.7 (8)
C(11)	295 (7)	-2072 (17)	1761 (8)	4.3 (8)
C(12)	717 (7)	-2508 (14)	2447 (8)	$5 \cdot 3$ (7)
C(13)	1226 (7)	-1809 (15)	2926 (8)	$4 \cdot 2$ (7)
C(14)	1688 (8)	-2300 (16)	3669 (8)	5.9 (8)
C(15)	981 (8)	935 (16)	1863 (8)	5.7 (8)
C(16)	-253 (7)	-2853 (16)	1256 (8)	5.5 (8)
C(17)	3821 (7)	709 (13)	3479 (7)	3.7 (7)
C(18)	3320 (6)	1369 (14)	3001 (7)	3.9 (7)
C(19)	3223 (6)	2500 (15)	3152 (7)	$4 \cdot 1$ (7)
C(20)	3655 (7)	3019 (14)	3809 (8)	$3 \cdot 8$ (7)
C(21)	4177 (6)	2333 (14)	4302 (7)	$3 \cdot 8$ (7)
C(22)	4662 (8)	2877 (14)	5004 (7)	4.3 (7)
C(23)	2675 (7)	3242 (16)	2632 (8)	5.4 (8)
C(24)	3936 (7)	-514 (14)	3308 (7)	4.8 (7)
$\mathrm{O}(1)$	1007 (5)	770 (11)	265 (6)	6.6 (6)
O(2)	1738 (6)	1738 (11)	228 (7)	$7 \cdot 0$ (6)
$\mathrm{O}(3)$	1988 (5)	862 (11)	1265 (6)	$7 \cdot 7$ (7)
$\mathrm{O}(4)$	1405 (7)	2620 (12)	816 (7)	8.5 (7)
$\mathrm{O}(5)^{*}$	4860 (17)	1663 (34)	7852 (18)	13.7 (10)
O(6)*	4435 (10)	278 (20)	7010 (11)	8.4 (6)
$\mathrm{O}(7)^{*}$	4880 (20)	350 (40)	6910 (20)	9.0 (-)
O(8)*	5635 (40)	1928 (90)	7417 (50)	20.0 (-)

* The occupancies of $\mathrm{I}(2)$ and $\mathrm{Cl}(2)$ were 0.5 ; those for $\mathrm{O}(5)$ and $O(6)$ were 0.67 and those for $O(7)$ and $O(8), 0.33$. The partial occupancies of these several atoms were not refined.
weighted $R_{w}\left(=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}\right)$ is 0.065 .

The atomic scattering factors for $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{I}$ and Cl were those of Cromer \& Mann (1968) and for H from Stewart, Davidson \& Simpson (1965). The real part of the anomalous dispersion of I and Cl were corrected by values from Cromer \& Liberman (1970). The refined atomic parameters are listed in Table 1.* All com-

[^1]putations were done with the XRAY70 system (Stewart, Kundell \& Baldwin, 1970).

Discussion. Fig. 1 shows the conformational differences between the two iodonium cations present in the asymmetric unit. The cation occupying a general position has a significant twist with a dihedral angle of 35.7° between the γ-collidine ring planes. The cation that has the iodine on the centre of symmetry has γ-collidine rings that are parallel with planes $1.35 \AA$ apart. The iodine atoms, $I(1)$ and $I(2)$, are significantly out of the planes of all of the aromatic ring systems.
The atom numbering, bond lengths and interbond angles are contained in Fig. 2. Even though the two cations display such different conformations, the three unique I-N distances are similar and have an average value of $2.29 \AA$. The corresponding distance in pyridine. $2 \mathrm{I}_{2}$ is $2 \cdot 16 \AA$ (Hassel \& Hope, 1961) and for

Fig. 1. Stereoscopic drawing of two bis(2,4,6-trimethyl-1-pyridyl)iodonium cations illustrating the conformational differences between the general-position complex liodine atom I(1)] and the complex positioned at the centre of symmetry liodine atom I(2)].

Fig. 2. Bond distances (A) and interbond angles (${ }^{\circ}$) with atom numbering. The estimated errors in these parameters average $0.01 \AA$ for bond lengths and 1° for angles. The $\mathrm{Cl}(2)-\mathrm{O}$ distances for the disordered perchlorate are: $O(5) 1 \cdot 32(5), O(6)$ $1.51(2), O(7) 1.41(6), O(8) 2.1(2) \AA$. The angles involving $\mathrm{O}(5), \mathrm{O}(6)$ and $\mathrm{Cl}(2)$ are only approximately tetrahedral: range 102-116 ${ }^{\circ}$.
the bis(3-picoly) iodonium cation it is $2 \cdot 24 \AA$ (Osborn, 1972). It has been suggested that these latter two distances are shorter than those observed for tertiary amines; e.g. in the bis(hexamethylenetetramine)iodonium cation the distance is $2.30 \AA$ (Pritzkow, 1975). It would appear that the bulky methyl groups at the 2,6 positions of the pyridine ring have caused the twist and slip conformations and the increased bond length from that in pyridine. $2 \mathrm{I}_{2}$.

This is not due, however, to steric hindrance between methyl groups, as the distances $\mathrm{C}(6) \cdots \mathrm{C}(15)$, $C(7) \cdots C(14)$ and $C(22) \cdots C\left(24^{\prime}\right)$ are $4.67,4.57$ and $4.40 \AA$ respectively. Even with the two γ-collidine rings exactly coplanar the minimum contact distance is $4 \cdot 19 \AA$, a value comfortable enough to accommodate two methyl groups with van der Waals radii of $\sim 2.0 \AA$.

The fact that the rodine atoms lie out of the γ-collidine ring planes (Table 2) indicates that a close intramolecular contact between the bulky iodonium cation (radius $\simeq 2.0 \AA$) and the methyl groups (van der Waals radius $\simeq 2.0 \AA$; Bondi, 1964) exists and precludes a coplanar arrangement. There are six unique $\mathrm{CH}_{3} \cdots \mathrm{I}$ intramolecular non-bonded contacts in the two cations of average length $3.315 \AA$, approximately $0.7 \AA$ shorter than the sum of the van der Waals radii.

The two bond angles at the iodine atoms $I(1)$ and I(2) are 177 (1) and 180°, respectively. A linear or nearly linear bond angle at the iodine has been observed frequently; for example 180° in the dipyridyliodonium cation (Hassel \& Hope, 1961), 179° in pyridine. ICl (Rømming, 1972), 180° in 4 picoline. I_{2} (Hassel, Rømming \& Tufte, 1961), 176° in trimethylamine.ICl (Hassel \& Hope, 1960), 180° in trimethylamine. I_{2} (Strømme, 1959) and 176.5° in bis(hexamethylenetetramine)iodonium triiodide (Pritzkow, 1975).

Table 2. Least-squares planes and distances therefrom
(a) Equations

Plane	p	q	r	d	χ^{2}
1	$0.8532 x$	$+0.1581 y$	$-0.4970 z=$	-2.4371	2.01
2	$0.845 x$	$-0.4281 y$	$-0.3162 z=$	-1.4564	0.99
3	$0.8467 x$	$+0.3893 y$	$-0.3627 z=$	2.8216	6.50

(b) Distances (\AA) of atoms from least-squares planes

Plane 1		Plane 2		Plane 3	
$\mathrm{N}(1)^{*}$	0.012 (8)	N(2)*	-0.005 (8)	N(3)*	-0.029 (9)
C(1)*	-0.008 (9)	C(9)*	0.001 (9)	C(17)*	0.015 (10)
C(2)*	0.006 (9)	$\mathrm{C}(10)^{*}$	-0.002 (10)	$\mathrm{C}(18)^{*}$	0.008 (11)
C(3)*	-0.008 (10)	C(11)*	0.007 (12)	C(19)*	-0.015 (11)
C(4)*	0.012 (9)	C(12)*	-0.011 (11)	C(20)*	0.002 (12)
C(5)*	-0.014 (10)	C(13)*	0.010 (10)	C(21)*	0.020 (10)
C(6)	0.041 (11)	C(14)	0.012 (10)	C(22)	0.091 (12)
C(7)	-0.006 (12)	C(15)	0.021 (11)	C(23)	-0.022 (11)
C(8)	0.034 (11)	C(16)	0.020 (11)	C(24)	0.080 (12)
I(1)	-0.142 (6)	I(1)	-0.262 (6)	I(2)	-0.674 (7)

Fig. 3. Partial packing diagram for bis(2,4,6-trimethyl-1-pyridyl)iodonium perchlorate showing the stacking of the ring planes. The perchlorate ions interleave the planes to provide the counter ion to the iodonium cation. The three unique interplanar spacings are $3.61,3.84$ and $3.50 \AA$.

A partial packing diagram is shown in Fig. 3. There are six γ-collidine rings which stack so that there are three unique distances between planes. The distances are: plane 1 to plane 1 stacked across a centre of symmetry, $3.61 \AA$; plane 1 to plane 3 lthese planes have a dihedral angle of 15°, so a mean distance is given by $\mathrm{C}(19)$ in plane 3 to plane 1 of $3.84 \AA$); plane 2 to plane $3,3 \cdot 50 \AA$. The stacking of these planes is clearly an important determinant in the crystal packing which has interleaving perchlorate anions as counter ions to the positively charged iodonium cations.

It is difficult to judge whether the presence of the ortho-methyl groups has caused the observed lengthening of the $\mathrm{I}-\mathrm{N}$ charge-transfer bond length from an expected $\sim 2 \cdot 16 \AA$ (Hassel \& Hope, 1961). However, it is clear that these bulky groups have brought about alterations in the molecular conformations which could be due to the short intracationic non-bonded interaction between the iodine and methyl groups.

We thank L. Delbaere, K. Hayakawa, M. Matsushima and R. Read for helpful comments during this work. The financial support of the Medical Research Council of Canada is gratefully acknowledged.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Hassel,O. (1970). Science, 170, 497-502.
Hassel, O. \& Hope, H. (1960). Acta Chem. Scand. 14, 391-397.
Hassel, O. \& Hope, H. (1961). Acta Chem. Scand. 15, 407-416.
Hassel, O. \& Rømming, C. (1967). Acta Chem. Scand. 21, 2659-2662.

Hassel, O., Rømming, C. \& Tufte, T. (1961). Acta Chem. Scand. 15, 967-974.
Lemieux, R. U. \& Morgan, A. R. (1965). Can. J. Chem. 43, 2190-2198.
North, A. C. T., Phillips, D. C. \& Mathews, F. C. (1968). Acta Cryst. A 24, 351-359.

Osborn, R. S. (1972). PhD Thesis, Univ. of London.
Pritzkow, H. (1975). Acta Cryst. B31, 1505-1506.
Rømming, C. (1972). Acta Chem. Scand. 26, 1555-1560.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stout, G. H. \& Jensen, L. H. (1968). X-Ray Structure Determination, A Practical Guide, pp. 454-458. New York: Macmillan.
Strømme, K. O. (1959). Acta Chem. Scand. 13, 268-274.

X-ray Analysis of 3,4-Dihydro-2 H -[1]benzothieno[3,2-b]pyran-2-spiro-2'(3'H)-(1-benzothiophen)- $\mathbf{3}^{\prime}$-one

By Philip J. Cox
School of Pharmacy, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB9 1FR, Scotland
and R. A. Howie
Chemistry Department, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 27 May 1981; accepted 29 July 1981)

Abstract

C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=324.4, D_{x}=1.443 \mathrm{Mg}\) m^{-3}, monoclinic, $P 2_{1} / c, Z=4, a=9.722$ (4), $b=$ 12.982 (16), $c=11.991$ (6) $\AA, \beta=99.40$ (4) ${ }^{\circ}, U=$ $1493.1 \AA^{3}, \mu($ Mo $K \alpha)=0.307 \mathrm{~mm}^{-1}$. Final $R=0.050$ for 1695 independent reflexions. The dimer is spirofused and contains benzothiophene moieties that are almost planar, together with a central dihydropyran ring that adopts a half-chair conformation.

Introduction. An X-ray analysis of the title compound was undertaken to determine the constitution of the molecule. As previously reported (Cox, MacKenzie \& Thomson, 1981), it is formed by reaction of 3-bromothiochroman-4-one with sodium acetate in acetic acid. Data were obtained for a yellow, needle-shaped crystal from a Nicolet P3 automated diffractometer using monochromatized Mo $K \alpha$ radiation. Integrated relative intensities for 2366 independent reflexions with $2 \theta<50^{\circ}$ were measured as $\theta-2 \theta$ scans; 1695 reflexions had $I>2 \cdot 5 \sigma(I)$.

The crystal structure was elucidated by direct phasing using the program MULTAN (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). All H atoms were located (near calculated positions) on electron density maps calculated at intermediate stages of structure refinement. In the final cycles of full-matrix
least-squares refinement the positional parameters for all atoms, anisotropic thermal parameters for the C and O atoms and isotropic thermal parameters for the H atoms were varied. A unit weighting scheme was used and convergence was reached at $R=0.050$.

Discussion. The molecular structure and the packing of the molecules in the unit cell are shown in Figs. 1 and 2. The atomic coordinates are listed in Table 1 and the bond lengths, valency angles and torsion angles are in Tables 2-4.*

[^2]

Fig. 1. The atomic arrangement in the molecule.
© 1982 International Union of Crystallography

[^0]: *Present address: Department of Biochemistry, University of California, Riverside, California 92521, USA.

[^1]: * Lists of structure factors, anisotropic thermal parameters and hydrogen positional parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36332 (14 pp.). Copies may be obained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36234 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

